首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   1篇
  国内免费   8篇
安全科学   12篇
废物处理   19篇
环保管理   8篇
综合类   18篇
基础理论   21篇
污染及防治   71篇
评价与监测   18篇
社会与环境   2篇
  2022年   4篇
  2021年   6篇
  2019年   4篇
  2018年   6篇
  2017年   10篇
  2016年   5篇
  2015年   1篇
  2014年   9篇
  2013年   17篇
  2012年   14篇
  2011年   16篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   10篇
  2006年   6篇
  2005年   2篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   7篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有169条查询结果,搜索用时 19 毫秒
161.
Congener specific polychlorinated biphenyl (PCB) data from the stack gas of nine Korean municipal waste incinerators was used to determine characteristic congener patterns of emitted PCBs. Principal component analysis revealed three classes of incinerators according to their pattern of PCB congener emissions: those resembling the background sampling material; those producing large quantities of a few tetra-chlorinated congeners; those producing large proportions of mono (MO-) and non-ortho (NO-) congeners relative to di-ortho (DO-) levels. Also, correlations between individual PCB congeners and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) were discovered for several NO-PCBs and tetra and penta chlorinated PCDFs. Full PCB congener data is presented along with operating conditions for each incinerator.  相似文献   
162.
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were monitored in stack gas and fly ash of various Korean incinerators and in air samples collected near the facilities. Concentrations of PCDD/Fs in emissions were investigated, and characteristic PCDD/F homologue patterns were classified using statistical analyses. The PCDD/F emission levels in stack gas and fly ash samples from small incinerators (SIs) were higher than those from municipal solid waste incinerators (MSWIs). The PCDD/F concentrations ranged between 0.38 and 1.16 pg I-TEQ/m3 (21.2-75.2 pg/m3) in ambient air samples. The lower-chlorinated furans were the dominant components in most of the stack gas and fly ash samples from SIs, although this was not the case for fly ash from MSWIs. This homologue pattern is consistent with other studies reporting a high fraction of lower-chlorinated furans in most environmental samples affected by incinerator emissions, and it can be used as an indicator to assess the impact of such facilities on the surrounding environment.  相似文献   
163.
Monitoring of non-point source pollutants load from a mixed forest land use   总被引:3,自引:0,他引:3  
The aim of this study was to determine the unit load of NPS (non-point source) pollutants including organic variables such as BOD (biochemical oxygen demand),COD (chemical oxygen demand) and DOC (dissolved organic carbon),nitrogen and phosphorus constituents,and suspended solids (SS) and their event mean concentration (EMC) of runoff flows from a water-shed of mixed forest land use by intensive field experiments.Field monitoring for continuous measurements of rainfall,flow,and water quality was conducted over 12 storm events during 2008–2009 using automated and manual sampling methods.The EMCs of individual runoff event were estimated for each water quality constituent based on the flow rate and concentration data of runoff discharge.The average EMCs of BOD,COD,DOC,SS,TN (total nitrogen),NH 4+ -N,NO 3- -N,TP (total phosphorus),PO 43- -P from the mixed forest land were 1.794,3.498,1.462,10.269,0.862,0.044,0.634,0.034,and 0.005 mg/L,respectively.The annual unit loads of BOD,COD,DOC,SS,TN,NH 4+ -N,NO 3- -N,TP and PO 43--P were estimated as 66.9,133.2,55.5,429.8,36.5,1.6,26.9,1.3 and 0.1 kg/(ha·yr),respectively.In addition,affecting parameters on the EMCs were investigated by statistic analysis of the field data.As a result,significant correlations with precipitation,rainfall intensity,and total runoff flows were found in most constituents.  相似文献   
164.
A continuous flow streamwise thermal gradient cloud condensation nuclei (CCN) counter with an aerosol focusing and a laser-charge-coupled device (CCD) camera detector system was developed here. The counting performance of the laser-CCD camera detector system was evaluated by comparing its measured number concentrations with those measured with a condensation particle counter (CPC) using polystyrene latex (PSL) and NaCl particles of varying sizes. The CCD camera parameters (e.g. brightness, gain, gamma, and exposure time) were optimized to detect moving particles in the sensing volume and to provide the best image to count them. The CCN counter worked well in the particle number concentration range of 0.6–8000 #·cm−3 and the minimum detectable size was found to be 0.5 μm. The supersaturation in the CCN counter with varying temperature difference was determined by using size-selected sodium chloride particles based on K?hler equation. The developed CCN counter was applied to investigate CCN activity of atmospheric ultrafine particles at 0.5% supersaturation. Data showed that CCN activity increased with increasing particle size and that the higher CCN activation for ultrafine particles occurred in the afternoon, suggesting the significant existence of hygroscopic or soluble species in photochemically-produced ultrafine particles.  相似文献   
165.
The flows of paper are analyzed throughout the papermaking processes, with the year 2007 and Korea defined as the system boundaries. In practice, the statistical data on the production, import and export of paper or pulp can be collected with relative ease from the government and industrial associations. However, the input data regarding the volumes of pulp and wastepaper used in different paper products, such as newsprint, printing papers, sanitary and household papers, specialty papers, and corrugating board base, are difficult to obtain because such information is generally kept confidential in the course of corporate operations.The production processes of paper products in Korea are modeled using information on raw materials, their compositions and production yields of products in order to identify and quantify the amounts of pulp and wastepaper used in each paper product. The material flows of paper are then analyzed based on the calculation model derived from the correlation of input and output flows between the individual processes throughout the entire paper lifecycle. Accuracy analysis using both mean absolute error (MAE) and mean absolute percent error (MAPE) is conducted to verify the amounts of pulp and wastepaper calculated from the proposed model against the volumes of domestically consumed pulp and wastepaper provided in the national statistics. Although the calculated values for the past (i.e., the 1980s and 1990s) differ to some degree from the statistical values, the data for the 2000s have a relatively higher level of accuracy, with the MAPE of the total pulp and recycling volume at 5.39% and 5.30%, respectively, thus validating the adequacy of the proposed modeling method. The proposed calculation model can be effectively used in the material flow analysis (MFA) of paper to reduce the burden of data collection and obtain relatively accurate results.  相似文献   
166.
The concentrations and removal efficiencies of various kinds of micropollutants were investigated and the relationships between the input sources of industrial wastewater and occurrence patterns of each micropollutant were identified at nine on-site industrial wastewater treatment plants (WWTPs). The distribution pattern of each compound varied according to the WWTP type and several micropollutants were significantly related with specific industries: chlorinated phenols (ClPhs) with paper and metal industries, polycyclic aromatic hydrocarbons (PAHs) with petrogenic- and pyrogenic-related industries, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) with the paper industry, and chlorinated benzenes (ClBzs) with dye-related industries. The activated sludge (AS) process was very efficient in the removal of ClPhs and PAHs, and the filtration process in the removal of PCDD/Fs and 1,4-dioxane. Generally, the removal efficiencies of each micropollutant varied according to the WWTP type.  相似文献   
167.
• An innovative method of culturing bdelloid rotifer fed on flour was proposed. • Rotifer fed on flour grew faster than that fed on bacteria or Chlorella vulgaris. • The optimum mass culture conditions for rotifer fed on flour were investigated. • The cultured rotifer could improve sludge settleability in the SBR. This study aims to establish a simple and efficient method for the mass culture of bdelloid rotifers, which is the basis for the application of bdelloid rotifers as biological manipulators to improve wastewater biological treatment performance. A common bdelloid rotifer, Habrotrocha sp., in a wastewater biological treatment system was selected as the culture target. Rotifers fed on flour could reproduce faster than those fed traditional food such as Chlorella vulgaris or mixed bacteria. As a rotifer food, flour has the advantages of simple preparation, effortless preservation, and low cost compared to live Chlorella vulgaris or mixed bacteria, so it is more suitable for the mass culture of rotifers. The optimal rotifer culture conditions using flour as food were also studied. According to the experimental results, the recommended rotifer culture conditions are a flour particle size of 1 μm, a flour concentration of 6 × 106 cell/mL, a temperature of 28℃, a pH level of 6.5 and salinity of 100–500 mg/L. In addition, the sludge volume index in the sequencing batch reactor (SBR) with the addition of cultured rotifers was 59.9 mL/g at the end of operation and decreased by 18.2% compared to SBR without rotifer, which indicates that the cultured rotifers still retained the function of helping to improve sludge settling. This function may be related to the rotifer’s role in inhibiting bacteria from producing loosely bound extracellular polymeric substances in the SBR.  相似文献   
168.

Herein, we report a detailed study on creating heterojunction between graphitic carbon nitride (g-C3N4) and bismuth phosphate (BiPO4), enhancing the unpaired free electron mobility. This leads to an accelerated photocatalysis of 2,4-dichlorophenols (2,4-DCPs) under sunlight irradiation. The heterojunction formation was efficaciously conducted via a modest thermal deposition technique. The function of g-C3N4 plays a significant role in generating free electrons under sunlight irradiation. Together, the generated electrons at the g-C3N4 conduction band (CB) are transferred and trapped by the BiPO4 to form active superoxide anion radicals (?O2?). These active radicals will be accountable for the photodegradation of 2,4-DCPs. The synthesized composite characteristics were methodically examined through several chemical and physical studies. Due to the inimitable features of both g-C3N4 and BiPO4, its heterojunction formation, 2.5wt% BiPO4/g-C3N4 achieved complete 2,4-DCP removal (100%) in 90 min under sunlight irradiation. This is due to the presence of g-C3N4 that enhanced electron mobility through the formation of heterojunctions that lengthens the electron-hole pairs’ lifetime and maximizes the entire solar spectrum absorption to generate active electrons at the g-C3N4 conduction band. Thus, this formation significantly draws the attention for future environmental remediation, especially in enhancing the entire solar spectrum’s harvesting.

Graphical abstract
  相似文献   
169.
Environmental Science and Pollution Research - We aim to examine the association between chemical mixtures and obesity. Blood and urinary levels of tween-six chemicals were measured in adults who...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号